1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use sync::atomic::{AtomicUsize, Ordering};
use sync::{mutex, MutexGuard, PoisonError};
use sys_common::condvar as sys;
use sys_common::mutex as sys_mutex;
use sys_common::poison::{self, LockResult};
use time::Duration;

/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[stable(feature = "wait_timeout", since = "1.5.0")]
pub struct WaitTimeoutResult(bool);

impl WaitTimeoutResult {
    /// Returns whether the wait was known to have timed out.
    #[stable(feature = "wait_timeout", since = "1.5.0")]
    pub fn timed_out(&self) -> bool {
        self.0
    }
}

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// Functions in this module will block the current **thread** of execution and
/// are bindings to system-provided condition variables where possible. Note
/// that this module places one additional restriction over the system condition
/// variables: each condvar can be used with precisely one mutex at runtime. Any
/// attempt to use multiple mutexes on the same condition variable will result
/// in a runtime panic. If this is not desired, then the unsafe primitives in
/// `sys` do not have this restriction but may result in undefined behavior.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex, Condvar};
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock().unwrap();
///     *started = true;
///     cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock().unwrap();
/// while !*started {
///     started = cvar.wait(started).unwrap();
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Condvar {
    inner: Box<sys::Condvar>,
    mutex: AtomicUsize,
}

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new() -> Condvar {
        let mut c = Condvar {
            inner: box sys::Condvar::new(),
            mutex: AtomicUsize::new(0),
        };
        unsafe {
            c.inner.init();
        }
        c
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `mutex_guard`) and block the current thread. This means that any calls
    /// to `notify_*()` which happen logically after the mutex is unlocked are
    /// candidates to wake this thread up. When this function call returns, the
    /// lock specified will have been re-acquired.
    ///
    /// Note that this function is susceptible to spurious wakeups. Condition
    /// variables normally have a boolean predicate associated with them, and
    /// the predicate must always be checked each time this function returns to
    /// protect against spurious wakeups.
    ///
    /// # Errors
    ///
    /// This function will return an error if the mutex being waited on is
    /// poisoned when this thread re-acquires the lock. For more information,
    /// see information about poisoning on the Mutex type.
    ///
    /// # Panics
    ///
    /// This function will `panic!()` if it is used with more than one mutex
    /// over time. Each condition variable is dynamically bound to exactly one
    /// mutex to ensure defined behavior across platforms. If this functionality
    /// is not desired, then unsafe primitives in `sys` are provided.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn wait<'a, T>(&self, guard: MutexGuard<'a, T>)
                       -> LockResult<MutexGuard<'a, T>> {
        let poisoned = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            self.inner.wait(lock);
            mutex::guard_poison(&guard).get()
        };
        if poisoned {
            Err(PoisonError::new(guard))
        } else {
            Ok(guard)
        }
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()`
    /// except that the thread will be blocked for roughly no longer
    /// than `ms` milliseconds. This method should not be used for
    /// precise timing due to anomalies such as preemption or platform
    /// differences that may not cause the maximum amount of time
    /// waited to be precisely `ms`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned boolean is `false` only if the timeout is known
    /// to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_deprecated(since = "1.6.0", reason = "replaced by `std::sync::Condvar::wait_timeout`")]
    pub fn wait_timeout_ms<'a, T>(&self, guard: MutexGuard<'a, T>, ms: u32)
                                  -> LockResult<(MutexGuard<'a, T>, bool)> {
        let res = self.wait_timeout(guard, Duration::from_millis(ms as u64));
        poison::map_result(res, |(a, b)| {
            (a, !b.timed_out())
        })
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked for roughly no longer than `dur`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `dur`.
    ///
    /// Note that the best effort is made to ensure that the time waited is
    /// measured with a monotonic clock, and not affected by the changes made to
    /// the system time.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[stable(feature = "wait_timeout", since = "1.5.0")]
    pub fn wait_timeout<'a, T>(&self, guard: MutexGuard<'a, T>,
                               dur: Duration)
                               -> LockResult<(MutexGuard<'a, T>, WaitTimeoutResult)> {
        let (poisoned, result) = unsafe {
            let lock = mutex::guard_lock(&guard);
            self.verify(lock);
            let success = self.inner.wait_timeout(lock, dur);
            (mutex::guard_poison(&guard).get(), WaitTimeoutResult(!success))
        };
        if poisoned {
            Err(PoisonError::new((guard, result)))
        } else {
            Ok((guard, result))
        }
    }

    /// Wakes up one blocked thread on this condvar.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to `wait` or `wait_timeout`. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see `notify_all()`.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_one(&self) {
        unsafe { self.inner.notify_one() }
    }

    /// Wakes up all blocked threads on this condvar.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see `notify_one()`.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn notify_all(&self) {
        unsafe { self.inner.notify_all() }
    }

    fn verify(&self, mutex: &sys_mutex::Mutex) {
        let addr = mutex as *const _ as usize;
        match self.mutex.compare_and_swap(0, addr, Ordering::SeqCst) {
            // If we got out 0, then we have successfully bound the mutex to
            // this cvar.
            0 => {}

            // If we get out a value that's the same as `addr`, then someone
            // already beat us to the punch.
            n if n == addr => {}

            // Anything else and we're using more than one mutex on this cvar,
            // which is currently disallowed.
            _ => panic!("attempted to use a condition variable with two \
                         mutexes"),
        }
    }
}

#[stable(feature = "condvar_default", since = "1.9.0")]
impl Default for Condvar {
    /// Creates a `Condvar` which is ready to be waited on and notified.
    fn default() -> Condvar {
        Condvar::new()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Drop for Condvar {
    fn drop(&mut self) {
        unsafe { self.inner.destroy() }
    }
}

#[cfg(test)]
mod tests {
    use sync::mpsc::channel;
    use sync::{Condvar, Mutex, Arc};
    use thread;
    use time::Duration;
    use u32;

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn notify_one() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let g = m.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = m2.lock().unwrap();
            c2.notify_one();
        });
        let g = c.wait(g).unwrap();
        drop(g);
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn notify_all() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move|| {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock().unwrap();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cnt = cond.wait(cnt).unwrap();
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock().unwrap();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn wait_timeout_ms() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let g = m.lock().unwrap();
        let (g, _no_timeout) = c.wait_timeout(g, Duration::from_millis(1)).unwrap();
        // spurious wakeups mean this isn't necessarily true
        // assert!(!no_timeout);
        let _t = thread::spawn(move || {
            let _g = m2.lock().unwrap();
            c2.notify_one();
        });
        let (g, timeout_res) = c.wait_timeout(g, Duration::from_millis(u32::MAX as u64)).unwrap();
        assert!(!timeout_res.timed_out());
        drop(g);
    }

    #[test]
    #[should_panic]
    #[cfg_attr(target_os = "emscripten", ignore)]
    fn two_mutexes() {
        let m = Arc::new(Mutex::new(()));
        let m2 = m.clone();
        let c = Arc::new(Condvar::new());
        let c2 = c.clone();

        let mut g = m.lock().unwrap();
        let _t = thread::spawn(move|| {
            let _g = m2.lock().unwrap();
            c2.notify_one();
        });
        g = c.wait(g).unwrap();
        drop(g);

        let m = Mutex::new(());
        let _ = c.wait(m.lock().unwrap()).unwrap();
    }
}